Silicon Disulphide and Silicon Diselenide: A Reinvestigation

By Johannes Peters and Bernt Krebs
Anorganisch-Chemisches Institut der Universität Münster, Corrensstrasse, D-4400 Münster, Federal Republic of Germany

(Received 29 September 1981; accepted 16 November 1981)

Abstract

SiS}_{2}\) and SiSe_{2} are orthorhombic and isostructural, Ibam, with $a=9.583$ (3), $b=5.614$ (2), $c=$ 5.547 (2) $\AA, V=298.4 \AA^{3}, Z=4, D_{x}=2.052 \mathrm{Mg}$ m^{-3} at $293 \mathrm{~K}, a=9.545(3), b=5.564(2), c=$ 5.552 (2) $\AA, V=294.9 \AA^{3}, D_{x}=2.077 \mathrm{Mg} \mathrm{m}^{-3}$ at 138 K for SiS_{2}, and $a=9.669(3), b=5.998(2), c=$ 5.851 (2) $\AA, V=339.3 \AA^{3}, Z=4, D_{x}=3.640 \mathrm{Mg} \mathrm{m}^{-3}$ at $293 \mathrm{~K}, a=9.619(3), b=5.989(2), c=5.851$ (2) $\AA, V=337 \cdot 1 \AA^{3}, D_{x}=3.665 \mathrm{Mg} \mathrm{m}^{-3}$ at 138 K for SiSe_{2}. The refinements at $138 \mathrm{~K}\left(\mathrm{SiS}_{2}\right)$ and 293 K (SiSe_{2}) confirm the known structure types with some significant changes in cell dimensions and atomic coordinates. Final R factors for $\mathrm{SiS}_{2}\left(\mathrm{SiSe}_{2}\right)$ are 0.041 (0.018) for 200 (253) observed reflexions. Within the chains of edge-sharing $\mathrm{SiS}_{4}\left(\mathrm{SiSe}_{4}\right)$ tetrahedra, the SiS (SiSe) bond lengths are $2 \cdot 133$ (1) $\AA \mid 2 \cdot 275$ (1) $\AA \mid$, the $\mathrm{S}-\mathrm{Si}-\mathrm{S}(\mathrm{Se}-\mathrm{Si}-\mathrm{Se})$ bond angles in the planar fourmembered $\quad \mathrm{Si}_{2} \mathrm{~S}_{2} \quad\left(\mathrm{Si}_{2} \mathrm{Se}_{2}\right)$ rings are $98.8(1)^{\circ}$ $\left[100.0(1)^{\circ}\right.$].

Introduction. A more precise knowledge of the structures of SiS_{2} (Zintl \& Loosen, 1935; Büssem, Fischer \& Gruner, 1935) and SiSe_{2} (Weiss \& Weiss, 1952) is highly desirable to give reliable structure data for comparison of bond properties with other $\mathrm{Si}-\mathrm{S}$ and $\mathrm{Si}-\mathrm{Se}$ compounds. Crystal structures are now available for analogous four-membered $\mathrm{Si}_{2} \mathrm{~S}_{2}$ rings in $\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}$ and $\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Br}_{4}$ (Peters, Mandt, Meyring \& Krebs, 1981) and for similar $\mathrm{Ge}_{2} \mathrm{~S}_{2}, \mathrm{Ge}_{2} \mathrm{Se}_{2}$ and $\mathrm{Sn}_{2} \mathrm{~S}_{2}$ rings in $\mathrm{Ge}_{2} \mathrm{~S}_{6}^{4-}, \mathrm{Sn}_{2} \mathrm{~S}_{6}^{4-}$ (Krebs, Pohl \& Schiwy, 1972; Eulenberger, 1978), high-temperature $\mathrm{GeS}_{2}, \mathrm{GeSe}_{2}$ (Dittmar \& Schäfer, 1975, 1976), and in $\mathrm{Ge}_{2} \mathrm{Se}_{6}^{4-}$ (Krebs \& Müller, 1982).
SiS_{2} was obtained by reacting $\mathrm{Al}_{2} \mathrm{~S}_{3}$ with SiO_{2} at 1570 K in a dry N_{2} stream, fibrous colourless single crystals being prepared in a sealed quartz-glass tube at 1420 K . Space-group extinctions ($h k l: h+k+l \neq 2 n$. $h 0 l: h, l \neq 2 n, 0 k l: k, l \neq 2 n$) confirmed the space groups given earlier. Unit-cell dimensions were determined at 138 and 293 K by least-squares refinement from diffractometer measurements of 20 reflexions. A complete set of 235 unique intensity data were collected at 138 K in the range up to $2 \theta=60^{\circ}$ on a 0.03×0.05 $\times 0.36 \mathrm{~mm}$ needle-shaped crystal. The crystal was
sealed in a capillary and mounted along the needle axis [001]. All measurements were made with a Syntex $P 2_{1}$ diffractometer, using Mo Ka radiation $(\lambda=0.71069 \AA$, $2 \theta-\theta$ scan technique, intensity-dependent scan speed between 2 and $15^{\circ} \mathrm{min}^{-1}$, scan range in $2 \theta: 2 \cdot 0^{\circ}+$ $\alpha_{1}-\alpha_{2}$ separation, parallel graphite monochromator). Data reduction was done by Lorentz and polarization corrections; no absorption ($\mu=1.79 \mathrm{~mm}^{-1}$) or extinction corrections were necessary. 200 reflexions were accepted as being statistically above background on the basis that $I>1.96 \sigma(I)$ and were used in the refinements. The coordinates given by Zintl \& Loosen (1935) were transformed into a standard setting and the full-matrix least-squares refinement [SHELX program system: Sheldrick (1976)] gave final R values of $R_{1}=\Sigma\left(| | F_{o}\left|-\left|F_{c}\right|\right|\right) / \sum\left|F_{o}\right|=0.041$ (all 235 data: $0.044), R_{2}=\left[\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum w F_{o}^{2}\right]^{1 / 2}=0.037$. The weighting scheme was based on counting statistics. Form factors for the elements were used as given in International Tables for X-ray Crystallography (1974).

Needle-shaped colourless single crystals of SiSe_{2} were prepared from the elements in a sealed quartzglass tube at 1170 K for 12 d .271 independent X-ray diffraction data up to $2 \theta=60^{\circ}$ were collected on a $0.04 \times 0.036 \times 0.28 \mathrm{~mm}$ crystal at $293 \mathrm{~K}, 253$ of which were significantly above background. Details of the unit cell and intensity measurements and of the refinement were as for SiS_{2}. An absorption correction was included in the data reduction ($\mu=23.4 \mathrm{~mm}^{-1}$), the smallest transmission factors being $0 \cdot 28$. The final residuals after anisotropic refinement were $R_{1}=0.018$ (for all 271 data: 0.022), $R_{2}=0.020$.

Final atomic coordinates and anisotropic temperature factors for both crystal structures are given in Table 1. Table 2 shows the interatomic distances and bond angles.* In Fig. 1 the unit cell with atomic designations and thermal ellipsoids for the SiSe_{2} room-temperature structure is given.

[^0]Table 1. SiS_{2} at 138 K and SiSe_{2} at 293 K : fractional atomic coordinates and anisotropic temperature factor coefficients $\left(\AA^{2}\right)$ with e.s.d.'s

The anisotropic temperature factors are of the form $\exp \left[-2 \pi^{2}\left(U_{11} h^{2} a^{* 2}+U_{22} k^{2} b^{* 2}+U_{33} l^{2} c^{* 2}+2 U_{12} h k a^{*} b^{*}\right) \mid\right.$.

		x	y	z	U_{11}	U_{22}	U_{33}	U_{12}
SiS_{2}	Si	0.0	0.0	0.25	0.0187 (10)	0.0220 (11)	0.0128 (8)	$0 \cdot 0$
	S	$0 \cdot 11820$ (14)	0.2088 (3)	$0 \cdot 0$	0.0214 (7)	0.0234 (8)	0.0147 (6)	-0.0055 (6)
$\mathrm{SiSe}{ }_{2}$	Si	0.0	0.0	0.25	0.0332 (5)	0.0314 (5)	0.0176 (4)	0.0
	Se	$0 \cdot 12342$ (3)	0.21163 (6)	$0 \cdot 0$	0.0397 (2)	0.0388 (2)	0.0241 (2)	-0.0110 (1)

Table 2. Interatomic distances ((\AA) and bond angles $\left({ }^{\circ}\right)$ with e.s.d.'s

SiS_{2}		SiSe ${ }_{2}$	
Si -S	$2 \cdot 133$ (1)	$\mathrm{Si}-\mathrm{Se}$	$2 \cdot 275$ (1)
$\mathrm{Si} \cdots \mathrm{Si}^{\text {i }}$	2.776 (1)	$\mathrm{Si} \cdots \mathrm{Si}^{\text {i }}$	2.926 (1)
S \ldots. $\mathrm{S}^{\text {i }}$	3.239 (2)*	$\mathrm{Se} \cdots \mathrm{Se}^{\text {i }}$	3.484 (1)*
S \cdots. ${ }^{\text {ii }}$	3.577 (2)*	$\mathrm{Se} \cdots \mathrm{Se}^{\text {il }}$	3.776 (1)*
S...S ${ }^{\text {iii }}$	3.620 (2)*	$\mathrm{Se} \cdots \mathrm{Ce}^{\text {lii }}$	3.873 (1)*
S $\cdot . . S^{\text {iv }}$	3.774 (2)	$\mathrm{Se} \cdots \mathrm{Se}^{\text {iv }}$	3.842 (1)
S $\cdot . . S^{\text {v }}$	3.752 (2)	$\mathrm{Se} \cdots \mathrm{Se}^{\mathrm{v}}$	3.871 (1)
S... $\mathrm{S}^{\text {vi }}$	4.268 (2)	$\mathrm{Se} \cdots \mathrm{Cl}^{\text {vi }}$	4.530 (1)
S... $\mathrm{S}^{\text {vii }}$	3.950 (2)	$\mathrm{Se} \cdots \mathrm{Se}^{\text {vii }}$	4.203 (1)
$\mathrm{S}-\mathrm{Si}-\mathrm{S}^{\text {i }}$	98.8 (1)	$\mathrm{Se}-\mathrm{Si}-\mathrm{Se}^{\text {i }}$	$100 \cdot 0$ (1)
$\mathrm{S}-\mathrm{Si}-\mathrm{S}^{\text {i }}$	114.0 (1)	$\mathrm{Se}-\mathrm{Si}-\mathrm{Se}^{\text {i }}$	112.2 (1)
$\mathrm{S}^{\mathbf{i}}-\mathrm{Si}-\mathrm{S}^{\text {ii }}$	$116 \cdot 1$ (1)	$\mathrm{Se}{ }^{\mathrm{i}}-\mathrm{Si}-\mathrm{Se}^{\text {ii }}$	116.7 (1)
$\mathrm{Si}-\mathrm{S}-\mathrm{Si}^{\text {i }}$	81.2 (1)	$\mathrm{Si}-\mathrm{Se}-\mathrm{Si}^{\text {i }}$	$80 \cdot 0$ (1)

Symmetry code

(i)$-x,-y,-z$ (v) $\frac{1}{2}-x, \pm \frac{1}{2}+y, 0$ (ii) $-x, y, \pm \frac{1}{2}$	(vi) $x, 1-y, \pm \frac{1}{2}$
(iii) $x,-y, \pm \frac{1}{2}$	(vii) $-x, 1-y, 0$
(iv) $\frac{1}{2}-x, \frac{1}{2}-y, \pm \frac{1}{2}$	
$*$ Edges of the tetrahedra.	

Fig. 1. Unit cell of SiSe_{2} with 50% probability thermal ellipsoids at 293 K .

Discussion. The room-temperature unit-cell dimensions differ by a maximum of $0.04 \AA$ from the early film values given for SiS_{2} by $\mathrm{Zintl} \&$ Loosen (1935) and Büssem, Fischer \& Gruner (1935); the deviation from the reported SiSe_{2} data (Weiss \& Weiss, 1952; Hillel \& Cueilleron, 1971) is in some cases as large as $0.09 \AA$. This is partly due to the difficulties in the earlier investigations in obtaining good quality single crystals and in indexing the powder diagrams because of the approximate relationship $a \simeq \sqrt{ } 3 b \simeq \sqrt{ } 3 c$. Comparison of the cell dimensions for the two temperatures shows that the covalent bond system within the polymeric chain is reflected in the constant lengths of the cedges. This also shows that no significant difference is to be expected for low- and roomtemperature bond lengths (apart from possible librational corrections).

The two isotypic structures contain chains of distorted edge-sharing SiS_{4} and SiSe_{4} tetrahedra running parallel to \mathbf{c}. Comparison of the observed $\mathrm{Si}-\mathrm{S}$ distances to the mean value of about $2 \cdot 12-2 \cdot 14 \AA$ in a large number of 'unstrained' $\mathrm{Si}-\mathrm{S}$ compounds [see, for example, Mandt \& Krebs (1976); Krebs \& Mandt (1977); to this class belongs the quartz-like highpressure modification of SiS_{2} : Prewitt \& Young (1965)] shows that the angular strain imposed on the tetrahedra by their edge sharing by no means results in a bond lengthening. Similar observations are made in $\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Br}_{4}$ $\left[\begin{array}{lll}\mathrm{Si}-\mathrm{S} & 2 \cdot 114(8) \AA], \quad \mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}[\mathrm{Si}-\mathrm{S} 2 \cdot 114 \text { (1) } \AA]\end{array}\right.$ (Peters, Mandt, Meyring \& Krebs, 1981) and in the polymeric systems of high-temperature $\mathrm{GeS}_{2}[\mathrm{Ge}-\mathrm{S}$ 2.223 (5) \AA] and $\mathrm{GeSe}_{2}[\mathrm{Ge}-\mathrm{Se} 2.361$ (5) \AA] (Dittmar \& Schäfer, 1975, 1976), This is, however, in contrast to the dimeric anions $\mathrm{Ge}_{2} \mathrm{~S}_{6}^{4-}$ (Krebs, Pohl \& Schiwy, 1972; Eulenberger, 1978) and $\mathrm{Ge}_{2} \mathrm{Se}_{6}^{4-}$ (Krebs \& Müller, 1982) where the $\mathrm{Ge}-\mathrm{S}$ [2.272 (2) and 2.274 (3) $\AA]$ and $\mathrm{Ge}-\mathrm{Se}[2.417(2) \AA]$ bonds in the fourmembered rings are significantly longer (with a corresponding shortening of the negatively charged terminal ones).

The $\mathrm{S}-\mathrm{Si}-\mathrm{S}$ and $\mathrm{Se}-\mathrm{Si}-\mathrm{Se}$ bond angles within the $\mathrm{Si}_{2} \mathrm{~S}_{2}$ and $\mathrm{Si}_{2} \mathrm{Se}_{2}$ rings in SiS_{2} and SiSe_{2} (Table 2), as in $\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4}\left[99.8(1)^{\circ}\right]$ and $\mathrm{Si}_{2} \mathrm{~S}_{2} \mathrm{Br}_{4}\left[99.2(4)^{\circ}\right]$, are closer to the ideal tetrahedral angle than the corresponding angles in high-temperature $\mathrm{GeS}_{2}\left[97.9(1)^{\circ}\right]$, $\mathrm{Ge}_{2} \mathrm{~S}_{6}^{4-}\left[93.9(2)^{\circ}\right.$ and $\left.95.0(2)^{\circ}\right]$ and GeSe_{2}
[99.6(1) ${ }^{\circ}$] and $\mathrm{Ge}_{2} \mathrm{Se}_{6}^{4-}$ [95.4(1) ${ }^{\circ}$]. Among the nonbonding $\mathrm{S} \cdots \mathrm{S}$ and $\mathrm{Se} \cdots \mathrm{Se}$ distances the common edges of the tetrahedra are, as expected, by far the shortest. It is, however, remarkable that in SiSe_{2} the clear distinction between the shorter $\mathrm{Se} \cdots$.. Se distances within the edges of the tetrahedra and the much longer ones outside the tetrahedra gets partly lost, the interchain distances $\mathrm{Se} \cdots \mathrm{Se}^{\mathrm{iv}}$ and $\mathrm{Se} \cdots \mathrm{Se}^{v}$ being of the same order as the intratetrahedral distances.

The thermal parameters (Table 1) for SiSe_{2} are roughly twice as large as those for SiS_{2} in accordance with the higher temperature for the measurements. The significantly smaller values of U_{33} compared to U_{11} and U_{22} for both SiS_{2} and SiSe_{2} indicate, as expected, librational motion of the quasi-rigid $\left(\mathrm{SiS}_{2}\right)_{n}$ and $\left(\mathrm{SiSe}_{2}\right)_{n}$ chains around [001] rather than translational motion parallel to this direction.

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for substantial support of our work.

References

Büssem, W., Fischer, H. \& Gruner, E. (1935). Naturwissenschaften, 23, 740.

Dittmar, G. \& Schäfer, H. (1975). Acta Cryst. B31, 2060-2064.
Dittmar, G. \& Schäfer, H. (1976). Acta Cryst. B32, 2726-2728.
Eulenberger, G. (1978). Acta Cry'st. B34. 2614-2616.
Hillel, R. \& Cueilleron, J. (1971). Bull. Soc. Chim. Fr. pp. 394-398.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99 ff . Birmingham: Kynoch Press.
Krebs, B. \& Mandt, J. (1977). Z. Naturforsch. Teil B. 32. 373-379.
Krebs, B. \& Müller, H. (1982). Z. Anorg. Allg. Chem. Submitted.
Krebs, B., Pohl, S. \& Schiwy, W. (1972). Z. Anorg. Allg. Chem. 393, 241-252.
Mandt, J. \& Krebs, B. (1976). Z. Anorg. Allg. Chem. 420, 31-39.
Peters, J., Mandt, J., Meyring, M. \& Krebs. B. (1981). Z. Kristallogr. 156, 90-91.

Prewitt, C. T. \& Young, H. S. (1965). Science, 149, 535-537.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Weiss, A. \& Weiss, A. (1952). Z. Naturforsch. Teil B, 7, 483-484.
Zintl, A. \& Loosen, K. (1935). Z. Phys. Chem. (Leipzig), A174, 301-311.

Acta Cryst. (1982). B38, 1272-1274

Structure of 1,1,1,1,2,2,2,3,3,3-Decacarbonyl-2,3;2,3-di- μ-chloro-triangulo-triosmium

By Frederick W. B. Einstein, Terry Jones and Kenneth G. Tyers
Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 24 July 1981; accepted 25 November 1981)

Abstract

Os}_{3} \mathrm{Cl}_{2}(\mathrm{CO})_{10}, \quad\left[(\mu-\mathrm{Cl})_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\right], \quad M_{r}=\) 921.61, orthorhombic, $P b c a, a=25.580$ (8), $b=$ 22.832 (6), $c=12.036$ (3) $\AA, V=7029.5 \AA^{3}, Z=16$, $D_{c}=3.483, D_{m}=3.25 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Mo} \mathrm{Ka})=21.7$ mm^{-1}. The structure was solved by direct methods and refined by block-diagonal least squares to a final R value of 0.041 for 2838 independent reflections, $I>2 \cdot 3 \sigma(I)$. There are two crystallographically independent molecules with similar geometry in the asymmetric unit. The triosmium core defines an isosceles triangle with the dibridged non-bonding, osmiumosmium vector being 3.233 (2) \AA, compared to the non-bridged bond distance of 2.852 (2) \AA (av.).

Introduction. A yellow crystal, $0.25 \times 0.30 \times 0.22$ mm , was obtained by recrystallization from hexane and used for the diffraction studies.

0567-7408/82/041272-03\$01.00

Weissenberg and precession photographs taken with $\mathrm{Cu} K a$ radiation showed the crystal to be orthorhombic and systematic absences $0 k l: k=2 n+1, h 0 l: l=2 n+$ $1, h k 0: h=2 n+1$, uniquely defined the space group as Pbca.

Data were collected on a Picker FACS-1 automated four-circle diffractometer with Mo Ka radiation ($\lambda K a_{1}$ $=0.7093 \AA$) using a graphite monochromator and a scintillation counter with pulse-height discrimination. Cell dimensions were obtained from a least-squares refinement of 26 accurately centered reflexions with 2θ $>23^{\circ}$. Intensity data were collected using a scan rate of $2^{\circ} \mathrm{min}^{-1}$, a symmetrical scan width of $(1.2+0.692$ $\times \tan \theta)^{\circ}$ and background counts of 10% of the total scan time at each scan limit. Peak-profile analyses were performed on all reflections (Grant \& Gabe, 1978). Two standards were measured after every 70 reflec-

[^0]: * Lists of structure factors have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 36555 (5 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

